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Circularly symmetric Green tensors for the harmonic vector 
wave equation in spheroidal coordinate systems 

D J N Wallt 
Department of Electrical Engineering, University of Canterbury, Christchurch, 1, New 
Zealand 

Received 26 September 1977 

Abstract. Green tensor expansions for the vector harmonic wave equation, in spheroidal 
coordinate systems, are derived. The tensor expansions are suitable for application to 
problems in which the fields are circularly (rotationally) symmetric. Two expansions of the 
Green tensor are given; one appropriate to infinite free space and the other appropriate to 
the exterior of a spheroid having a vector Dirichlet boundary condition prescribed on its 
surface. 

1. Introduction 

Eigenfunction expansions of the free space Green function for the scalar Helmholtz 
equation have been found in many coordinate systems. Morse and Feshbach (1953, 
$7.2) describe a method whereby the appropriate expansion can be found in any 
coordinate system for which the scalar Helmholtz equation is separable. 

The Green function for the harmonic vector wave equation is commonly known in 
the engineering literature as the dyadic Green function. It is a tensor of rank two and 
we will refer to it as the Green tensor. The Green tensor is somewhat more elusive 
than its scalar counterpart, as a glance through the recent literature confirms (cf 
Howard 1974, Rahmat-Samii 1975, Tai and Rozenfeld 1976). Tai (1971) has pro- 
vided a collection of Green tensor expansions for the harmonic vector wave equation 
in a number of coordinate systems. It should be noted that, as has recently been 
pointed out by Tai (1973), these expansions are only suitable when the field and 
source points do not coincide. 

Recently while extending the generalised null field approach from scalar (Bates 
and Wall 1977) to vector diffraction problems (Wall 1976) the need arose for a free 
space Green tensor expansion in the spheroidal coordinate system. To our knowledge 
this tensor has not appeared in the literature, probably because the solution of the 
classic problem of radiation from a spheroid with circularly symmetric excitation does 
not need the deployment of a technique as powerful as the Green tensor technique. 

In this paper we give a derivation of the free space Green tensor expansion and the 
Green tensor expansion satisfying a vector Dirichlet boundary condition, both in 
terms of the spheroidal coordinates and for circularly symmetric fields. 

t Present address: Department of Mathematics, The University, Dundee, DD1 4HN, UK. 
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2. The vector eigenfunctions 

To find a suitable eigenfunction expansion for the Green tensor it is first necessary to 
consider vector eigenfunctions, in the spheroidal coordinate system, of the harmonic 
vector wave equation 

V x V x F- k2F = 0, (1) 

where the parameter k denotes the wavenumber. The partial differential equation (1)  
defines a vector field F existing in an infinite space Y in which a prolate spheroidal 
coordinate system (6, q, 4), at an origin 0 and with semi-focal distance d, has been 
defined. In all subsequent analyses only the prolate spheroidal coordinate system is 
considered although it is shown in 0 3.3 how all the results derived here can be applied 
to the oblate spheroidal coordinate system by a simple transformation. The prolate 
spheroidal coordinates are related to a Cartesian coordinate system (x ,  y ,  z ) ,  also 
located at 0, by the transformation 

x = d[(l-  q2)(t2- 1)]’’2 COS 4, y = d[(l -q2)(e2-  l)]’”sin 4, z = dq5, 
( 2 )  

with 
- 

In the prolate spheroidal system the surface 5 = constant > 1 is an elongated ellipsoid 
of revolution with major axis of length 2d5, minor axis of length 2d(52-1)”2 and 
eccentricity 116. 

All fields are to be taken as complex functions of space varying in time with 
angular frequency w but with the time factor exp(iwt) suppressed. Unit vectors in the 
various coordinate directions are denoted by the appropriate vector symbol with a 
circumflex accent and tensors will be signified by a vector symbol with an overbar. 

The interest in this paper is in circularly symmetric fields; it is therefore convenient 
to assume that the field will be independent of the azimuthal angular variable 4. It 
seems that it is impossible to construct analytically a Green tensor for more general 
fields in the spheroidal coordinates because of the restricted separability of the vector 
Helmholtz equation (Spencer 195 1, Spencer and Wells 195 1). 

A vector field F may always be uniquely separated into a longitudinal (irro- 
tational) part F,, and a transverse (solenoidal) part Ft by the Helmholtz theorem 
(Morse and Feshbach 1953, 0 1.5). 

The Green tensor can also be decomposed into longitudinal and transverse parts. 
As the longitudinal part of the tensor is not of interest in the majority of applications, 
and its easiest method of derivation differs from that of the transverse part, it is only 
considered in appendix 1.  Therefore only the transverse part of the vector eigen- 
functions need be considered. All fields appearing subsequently in this paper, unless 
stated otherwise, should be considered as tranverse. The subscript t is therefore 
dropped from all symbols representing transverse vector fields for notational con- 
venience. 

The tranverse component of a vector field may always be derived from a pair of 
scalar fields. As is customary, we will denote the independent transverse vectors 
derived from these scalar fields by the symbols M and N. 

Choosing the vector eigenfunction M to be 

M = &, (4) 
where $ is a scalar function of the variables 5 and 7 ,  it may be shown that M is a 
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solution of ( 1 )  provided that r/ l  is a solution of the equation 

(5  1 ((t2- 1 ) ~ +  aL ( 1  - v 2 ) y +  aL d 2 2  k (5 2 - q 2 ) )  [ d ( t 2 -  1 ) l l 2 ( 1  - 772)1/24] = 0. 
a5 877 

The other independent tranverse vector eigenfunction is defined by 

It may be easily verified that N given by (6 )  satisfies the vector differential equation 
( l ) ,  provided i,b is a solution of ( 5 ) ,  and also satisfies the cyclic relation 

V x N = k M .  (7 1 
M and N as defined in (4) and (6)  are readily seen to be transverse. The particular 
solutions of ( 5 )  which are finite, continuous, and single-valued throughout Y form a 
discrete set. We shall denote any one of these solutions by *,,. Associated with each 
eigenfunction +,, are the vector solutions M,, and N,,. The equation ( 5 )  is a particular 
form of the prolate spheroidal wave equation, and therefore the CL,, can be written in 
terms of the prolate spheroidal eigenfunctions as 

4“ =R?!,(kd, 5)si,n(kd, 771, n = l , 2 , 3  . . .  . (8) 

In (8), S1,,,(. ) denotes the prolate spheroidal angle function of azimuthal index 1 and 
of order n. R?!,( .  ) denotes the prolate spheroidal radial function of the pth kind with 
azimuthal index 1 and of order n. The superscript p which denotes the kind of radial 
function takes on the values 1 ,  2 ,  3 and 4. These numbers are used to denote radial 
functions which correspond to eigenfunctions that represent respectively, standing 
waves which are regular at the origin, standing waves which are singular at the origin, 
and travelling waves which are incoming at infinity and travelling waves which are 
outgoing at infinity. Flammer (1957) and Meixner and Schafke (1954) give detailed 
discussions on the properties of the spheroidal eigenfunctions. Use of (8) and (4) in 
(6)  gives the full expression for the vector eigenfunction N,, as 

Nb’(5, 77; k)=(52-772)-”2(sl ,n(kd,  v ) - [ ( t2 -  1 )  Rl , , (kd,  5)14 112 (P) d 
d5 

The superscript p is attached to the eigenfunctions M and N to denote the kind of 
radial function employed. 

The vector eigenfunctions satisfy orthogonality relations which are important to 
our later development. These relations are considered in appendix 2 and are 
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3. Eigenfunction expansions of the transverse Green tensor 

As explained in the previous section we are concerned only with the transverse part of 
the Green tensor here; the longitudinal part is considered separately in appendix 1. 

The circularly symmetric Green tensor satisfies an inhomogeneous partial 
differential equation of the form 

V X V X  G - k 2 G = D ( ( ,  7 3 ;  e’, q’), (11) 

where, as explained previously, we have omitted the subscript denoting that all the 
tensors in (11) are transverse. In (11) 6(. ) is the tensor ring function. It is indepen- 
dent of q5 and can be defined as a tensor which, when operating on any circularly 
symmetric vector field, say F([’, v’), yields (on integrating over Y in the primed 
coordinates) just the transverse part of F ( [ , q )  (cf Morse and Feshbach 1953, § 13.1). 

The completeness of the vector eigenfunctions discussed in § 2 in the space of 
piecewise continuous, circularly symmetric, transverse vector fields ensures that 6(. ) 
can be written as 

“ 
D(6, 7);6’,  V ’ ) ’ b  (M(nl)(Z,  7); K ) A n ( Z ’ ,  7)’; K ) + N L 1 ) ( 6 ,  7 ;  K ) B n ( 6 ’ ,  7)’; K ) ) d K ,  

n = l  

(12) 

where the initially unknown posterior functions A n ( .  ) and Bn( .  ) are to be deter- 
mined. Use of the relations (10) readily shows that 

where the normalising coefficient 1 1 , ~  is discussed in appendix 2. 

3.1. Free space Green tensor 

Following the Ohm-Rayleigh procedure (Tai 1971) the free space Green tensor, 
which we now denote by Go, is assumed to be of the form 

+PnNL1)(6, 7); K Y W t ’ ,  7)’; K))dK. (14) 

By substitution of (14) into (11) and use of (12) and (13) the unknown functions cy, 
and fin can be determined as 

(15) 
2 

f f n  =Pn = 1 / ( K  -k2). 

The dependence on R \ f i (~d ,  t)Rif!,(~d, 6’) of a tensor such as 
Mkl)(& 7; K)M:’)([’, 7’; K )  can be written in the operational form 

Mt’(6, 7); K ) M L 1 ) ( 6 ’ ,  7)’; K ) =  Fn((R\fA(Kd, 6)R\!!t(Kd, [’)I, (16) 

where Tn is some linear tensor operator. 
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2 An operational form of the integral identity derived in appendix 3, with g(K) = K 
can then be written as 

5>5’  

5’ ’ 5: 

i r k  
2 - -Mk4’(5, 77; kMfL1’(5‘, 77’; k), 

- 77; k)Mk4’(5‘, 77‘; k), 
(17) 

2 

By repeating the same technique an operational integral relationship involving the 
N n ( .  ) functions can be obtained. Equation (14), with a,, and on given by (15), can be 
simplified by use of the operational integral identity (17) and the corresponding 
equation involving the N,, eigenfunctions, to perform the K integration. The expan- 
sion for the circularly symmetric free space Green tensor can then be written as 

+“nl’(5, 77; k W f ’ W ,  77’; k)), 5’ 5. 

The superscripts (1) and (4) in (18) are interchanged when 5 >[’. 

3.2. Green tensor satisfying the vector Dirichlet boundary condition 

We derive here the Green tensor, denoted by GI, which satisfies the vector Dirichlet 
boundary condition 

n  ̂ x el([, 77; 5’,  77’) = 0, (5 ,77)ES,  (19) 

on the surface S of a spheroid of eccentricity 1/60. In (19) n  ̂ denotes the unit outward 
normal to S. In the preceding subsection a Green tensor possessing the correct 
singularity for a circularly symmetric ring source was given, but it will not satisfy (19). 
In order to comply with this boundary condition a suitable solution of the homo- 
geneous form of ( l l ) ,  say &, must be added to GO to obtain 

G1= Go+ Gl,. (20) 

In view of the composition of Go the tensor representing the scattered part must have 
the form 

(21) 

By making use of (18) throu h (21) and of the orthogonality of the vector eigen- 
functions, and by noting n̂  = d  we determine the unknown coefficients cn and d,, in 
(21) to be 
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and 

3.3. Expansion in the oblate spheroidal coordinate system 

The analysis presented in this paper has been in terms of the prolate spheroidal 
coordinate system. The formulae derived are, however, suitable for the oblate system 
provided that the following simple transformations are made. 

Terms involving (t2 - q 2 )  and (e2 - 1 )  become respectively (t2 + q2) and (5' + 1 ) .  
The arguments of the spheroidal functions SI,,(. ) and Rf ' : ( .  ) become respectively 
( - k d ,  q )  and (-iKd, it). 

4. Conclusions 

In summary, we have derived two different Green tensors suitable for the spheroidal 
coordinates. That these Green tensors are useful in extending the generalised null 
field approach from scalar to vector diffraction problems we intend to show in later 
publications. The tensor GI may be used to yield directly the solution to the classic 
problem of radiation from a spheroid with circularly symmetric excitation. 
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Appendix 1. The longitudinal part of Green tensor 

Howard (1974) has shown that the longitudinal part of the free space Green tensor 
satisfying the harmonic vector wave equation, for general fields, may be written in the 
following geometrically independent form 

where g is the scalar Green function for Laplace's equation, i.e. 

g = l / ~ X - d ~ .  (25 )  
In (25) x and XI are the position vectors from 0 to the observation and source points 
respectively. The prime on the gradient operator in (24 )  indicates that it operates with 
respect to source coordinates. 

For the special, circularly symmetric fields considered in this paper, GI is again as 
in (24 )  but with the static Green function g replaced by go, where 
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Use of the static Green function expansion given by Morse and Feshbach (1953, 
0 10.3) enables us to write the longitudinal part of the circularly symmetric, free space 
Green tensor expansion in prolate spheroidal coordinates as 

where Pn( . ) and a,(, ) denote respectively the Legendre functions of the first and 
second kinds. The variables 5 and 5' are interchanged in (27) when e'>(. The 
expansion analogous to (27) for the oblate spheroidal coordinate system is obtained 
by replacing 8 by it and 5' by is' in the argument of the appropriate functions. 

The longitudinal part of may be readily found by similar procedures. 

Appendix 2. Orthogonality of the vector eigenfunctions 

From the definitions of the vector eigenfunctions (cf (4) ,  (8) and (9)) it readily follows 
that 

I M'," ( 5 , ~  ; k ) . N'," ( 5 , ~  ; K ) dv = 0. (28) 

It is more involved to show the orthogonality of the NL1)(. ) eigenfunctions. 
However use of the definition (9), of the metric coefficients appropriate to the prolate 
spheroidal geometry (cf Flammer 1957, §2.2), and of the defining equation ( 5 ) ,  
enable one to show after some manipulation that 

We define both integrals in (29) as equal to An,m. It is therefore sufficient to consider 
only the orthogonality of the M!,')( .  ) eigenfunctions. 

The spheroidal angle functions can be shown (Flammer 1957, 0 3.1) to satisfy the 
orthogonality condition 

where Z 1 , ,  is given by 

W 2(m + 2) 
m=O (2m +3)m!' 

Z1," =Zl , , (kd)= E' (d?')* 

The coefficients d?, which are functions of kd, can be determined via the differential 
equation ( 5 )  (Flammer 1957, chap. 3). The prime over the summation sign in (31) 
indicates that only even values of m are included if n is odd and only odd values of m 
are included if n is even. 

In order to obtain the orthogonality properties of the M ( , ) ( .  ) eigenfunctions we 
consider a spherical polar coordinate system (r, 8, #) superimposed on the spheroidal 
coordinate system at the origin 0. The prolate spheroidal eigenfunctions can then be 
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expressed in terms of the spherical eigenfunctions (see Flammer 1957, § 5.3) as 

where i n ( .  ) denotes the spherical Bessel function of the first kind of order n. 
Examination of the functional form of the ML1'(. ) eigenfunctions and use of (30) 

shows that An,m = 0 unless m = n, so it will be sufficient to consider the form of A,,,. 
Use of the definition of the M? ( . ) eigenfunction, equation (32) and the ortho- 

gonality of the Legendre functions (Morse and Feshbach 1953, chap. 10) enables A,, 
to be reduced to 

m 

A,,,,, = 47r (d!,?(kd))' (m +*I! 1 jm+l(Kr)jm+l(kr)r2 dr. (33) 
m =O (2m+3)m! 

Hence the integral relationship 

when combined with (31) allows (33) to be written as 

k2 
7r28(k - K )  

I 1 . m  An9, = 

Appendix 3. An integral identity 

The integral 

(34) 

(35) 

where g ( K )  is an even analytic function of K, is evaluated here. Use of 

R ( ~ d ,  6) = $(RE,; ( ~ d ,  6) + R E,), ( ~ d ,  6)), (37) 

in (36) allows its right-hand side to be written as the sum of two integrals. It is 
convenient to examine the integral involving RE,),(. ) first; this integral is 

where it is initially assumed that 6 > 6'. With the change of variable K '  = e i w K  and 
taking note of the following (Meixner and Schiifke 1954, § 3.65): 

(38) can be written as 
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Combining (40) with the second integral involving RE,),,(. ) obtained from (36) by use 
of (37) yields 

The integral in (41) can be evaluated by allowing K to take on complex values and 
integrating along a contour in the  p plane. The contour is along the real axis indented 
above the pole K = k and below the pole K = -k and closed by a large semi-circle in 
the lower half plane. 

It is easy to show that the contribution from the large semi-circle vanishes in the 
limit as its radius becomes infinite when 5 > 5’; the integral (41) is then equal to 2ni 
times its residue at the pole K = k. When 5’ > 5, RzI,(Kd, 5’) in (36) is replaced using 
(37) and a similar procedure to the above is followed to evaluate the resulting 
integral. Thus (36) becomes 
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